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SUMMARY

We present a lattice Boltzmann-BGK (LBGK) algorithm for a diffusion equation together with a Robin
boundary condition, which we apply in the case of nuclear magnetic resonance relaxation. The boundary
condition we employ is independent of the direction of the wall. This makes the algorithm very suitable
for complicated geometries, such as porous media. We discuss the effect of lattice topology by using,
respectively, an eight-speed and a four-speed lattice. The numerical algorithm is compared with analytical
results for a square and an equilateral triangle. The eight-speed lattice performs well in both cases. The
four-speed lattice performs well for the square, but fails in the case of an equilateral triangle. Comparison
with a random walk algorithm is also included. The LBGK algorithm presented here can also be used for
a convective diffusion problem if the speed of the fluid can be neglected close to the boundary. Copyright
q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We will present a lattice Boltzmann-BGK (LBGK) algorithm for a diffusion equation with a
Robin boundary condition. This equation describes diffusion of a scalar field; the scalar field may
represent energy, a chemical component or magnetization. Our focus will mainly be on application
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for nuclear magnetic resonance (NMR) relaxation. Although magnetic resonance is a quantum
mechanical phenomenon, it can be described in terms of classical mechanics [1, 2]. In NMR
experiments, an external field is applied to, for example, a fluid. The protons in the fluid will
interact with the external field and because of thermal motion some protons will have their spin
parallel to the external field and some anti-parallel. The protons with their spin parallel to the
external magnetic field will have the lowest energy. The thermal motion will make the number
of spins in the low energy state slightly higher than the high energy state. This results in a net
magnetization from the fluid, which can be observed. By experimental methods, this magnetization
can be flipped into the xy-plane. The characteristic time it takes for the z-component to disappear
from the xy-plane is called T2 (spin–spin relaxation) and the characteristic time it takes to reach
thermal equilibrium is called T1 (spin–lattice relaxation).

During relaxation, if the spins are constrained by some kind of geometry, this will make the
magnetic signal disappear faster. The interaction of spins with the surface is modeled as a diffusion
equation with a Robin boundary condition [1, 2]. From a mathematical point of view, there is no
difference between relaxing spin and absorption of a diffusing chemical component in a solute.
In NMR one is normally interested in the total concentration in the solute or the number of spins
‘alive,’ as this can be measured as the magnetic signal from the sample.

The traditional approach to calculate the NMR signal has been random walk (RW) [3–8]. Lattice
Boltzmann (LB) algorithms for a convective diffusion equation have been used in the case of
heat conduction [9–13] and in the case of adsorption of chemical components [14–17]. To our
knowledge, there have been no attempts applying a LB algorithm to NMR relaxation. We compare
numerical solutions with corresponding analytical solutions for a square and an equilateral triangle.
We also discuss the effect of the number of velocity vectors used for calculating the numerical
solution via the LBGK method. It turns out that the Robin boundary condition is very sensitive to
the discretization of the boundary. In particular, we observe that the eight-speed lattice gives results
that are much better than the four-speed lattice for the case with the equilateral triangle. The four
velocity lattice produces wrong solutions, due to inappropriate representation of the boundary. We
also make a comparison between the RW algorithm and the LB algorithm on a square domain.

Figure 1. An SEM image of a thin section of a sandstone core. The total length of the image is 2mm.
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Our result reflects that the LB algorithm is more accurate at a low number of grid points; this is
partly a consequence of the stochastic nature of RW.

The boundary condition presented in this paper is shown to be related to the same type of
boundary condition used in RW simulations of NMR relaxation [3–8]. A nice feature then is that
the boundary condition is independent of the orientation of the wall. This makes the proposed
algorithm well suited for application to irregular geometries such as porous media. As an illustration
of the complexity of a porous medium, there is a scanning electron image (SEM) of a thin section
of a sandstone core in Figure 1.

The outline of the article is as follows: in Section 2 we derive the convective diffusion equation
by the use of a Chapman–Enskog expansion. In Section 3 we present the boundary condition in
the limit of zero flow velocity. Further, in Section 3 we compare the numerical and analytical
solution for a square and an equilateral triangle. We also include a comparison between RW and
LB. Finally, in Section 4 we present discussion and conclusions.

2. THE LB METHOD

The LB is a mesoscopic particle-based approach to simulate a physical system. Fictitious particles
move on a regular lattice and collide with each other. A collision rule is obeyed for particles
meeting at the same lattice point or neighbor points for multi-phase problems [18].

In this work, we assume that we have one type of species that represents a component dissolved
in a fluid flowing with a velocity u. This component may be the concentration of a chemical
component or the density of magnetic spin. The component may react with the wall and obey the
following equation in the interior of the fluid:

fi (x+ci�t , t+�t )− fi (x, t)=−1

�
[ fi (x, t)− f eqi (x, t)] (1)

where fi (x, t) represents the distribution of particles entering site x at time t and moving in the
direction i with velocity ci . The right-hand side of Equation (1) represents the collision operator
and all the directions relax with a single relaxation time �. The collision operator is simply the
difference between the local equilibrium solution f eqi (x, t) and the distribution function. The lattice
topology satisfies the following relations [19]:

N∑
i

�i = 1

N∑
i

�i ci � = 0

N∑
i

�i ci �ci� = C2c
2��,�

N∑
i

�i ci �ci�ci � = 0

(2)

where the Greek indices go over the spatial dimensions and the Latin indices go over the number
of velocity vectors. c=�x/�t is the speed of sound on the lattice, and �i are the weights and can be
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assumed as the mass of a particle moving in the i direction. The form of the equilibrium distribution
function f eqi (x, t) determines the continuum equations. In order to describe a convective diffusion
process, we choose the following form [9]:

f eqi (x, t)=�i�

[
1+ 1

C2

ci ·u
c2

]
(3)

where � represents the scalar field in this case the magnetic field and C2 is the constant appearing
in (2). The distribution function obey the following conservation laws:

N∑
i
fi (x, t) = �(x, t)

N∑
i
ci fi (x, t) = �(x, t)u

(4)

The continuum equations can be obtained by performing a Chapman–Enskog expansion. By
assuming that �t is small, we can Taylor expand Equation (1):

�t (�t +ci ·∇) fi (x, t)+ �2t
2

(�t +ci ·∇)2 fi (x, t)+O(�3t )=−1

�
[ fi (x, t)− f eqi (x, t)] (5)

We then expand the distribution function and introduce two time scales, t0= t and t1=�t t :

fi (x, t) = f (0)
i (x, t)+�t f

(1)
i (x, t)+�2t f

(2)
i (x, t)+O(�3t )

�t = �t0 +�t �t1
(6)

Substituting this equation into (5), we find to order O(�3t ):

f (0)
i (x, t)= f eqi (x, t) (7)

(�t0 +ci ·∇) f (0)
i (x, t)=−1

�
f (1)
i (x, t) (8)

�t1 f
(0)
i (x, t)+

(
1− 1

2�

)
(�t0 +ci ·∇) f (1)

i (x, t)=−1

�
f (2)
i (x, t) (9)

Multiplying Equations (8) and (9) with �i and taking the sum over i , we find

�t0�+∇ ·(�u)=0 (10)

�t1�+
(
1− 1

2�

)
N∑
i

�i∇ ·ci f (1)
i =0 (11)

where we have used Equations (2) and (7). We then multiply Equation (8) with ci and sum over i :

∑
i

�ici f
(1)
i = −�

∑
i

(�t0 +ci ·∇)ci f
(0)
i

= −�(�t0(�u)+c2C2∇�) (12)
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Multiplying Equation (11) with �t , adding Equation (10) and inserting Equation (12), we find

(�t0 +�t�t1)�+∇ ·(�u)−C2

(
�− 1

2

)
�2x
�t

∇2�−
(

�− 1

2

)
�t∇ ·�t0(�u)=0 (13)

The last term is formally of higher order as we consider fluids with small flow velocities, that is,
u∼O(�t ). Then we finally arrive at the convective diffusion equation:

�t�+∇ ·(�u)−D∇2�=0

D≡C2

(
�− 1

2

)
�2x
�t

(14)

In the remainder of this paper we will restrict ourselves to the case of no flow, i.e. u=0.

3. METHOD OF COMPUTATION

We have not used any information about the particle velocity ci and the weights �i apart from
the constraints in Equation (2). As stated [20], if 90◦ rotational invariance is sufficient to yield
full isotropy for diffusive phenomena, then the simplest representation of the equilibrium function
would be to have a square lattice with four velocities [11, 20]. Other models have also been used
[14–17]. We will use one model with four directions (2DQ5) and another with eight directions
(2DQ9); see Figure 2. The velocity vectors will then be

[c1,c2,c3,c4,c5,c6,c7,c8] =
[
1 0 −1 0 1 −1 −1 1

0 1 0 −1 1 1 −1 −1

]

[c1,c2,c3,c4] =
[
1 0 −1 0

0 1 0 −1

] (15)

2e6 e e5

e1

e8e4e7

e3

2
e

e1

e4

e3

Figure 2. Velocities used in the LB algorithm. Left: eight velocities—2DQ9
and right: four velocities—2DQ5.
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All the weights will be chosen to be equal �i =�= 1
8 (2DQ9), 1

4 (2DQ5). By inserting Equation
(15) in the third relation of Equation (2) it follows that C2= 3

4 (2DQ9), 1
2 (2DQ5). Assuming the

fluid to be stationary, it follows from (3) that we have the following equilibrium function:

f eqi (x, t)=��(x, t) (16)

3.1. Implementation of the boundary condition

In LB implementation, the boundary condition reduces to the problem of expressing the (unknown)
incoming distribution functions in terms of the (known) outgoing distributions functions. This
problem is ill posed; there are several ways in which this can be done. We will justify the boundary
conditions derived in this paper by comparison with analytical solutions. The continuum boundary
condition is a Robin type of the form:

Dn·∇�(x, t)+	(x)�(x, t)|S=0 (17)

where 	 is the surface relaxtivity. It is a measure of how strongly the spins interact with the surface
or how strongly a chemical component adsorb to a surface. If 	→0 the spins just bounce back
from the surface and if 	→∞ the spin hitting the surface ‘dies,’ that is, it does not contribute to
the magnetic signal.

Our approach is motivated from the Chapman–Engskog expansion outlined in the previous
section. Starting with Equation (8),

ci ·∇ f eqi (x, t)=−1

�
f (1)
i (x, t) (18)

where we have used Equation (7) and assumed a steady state at the surface.‡ On the basis of
Equation (18), one may argue that the non-equilibrium part of the distribution function, �t f

(1)
i =

fi − f (eq)
i +O(�2t ), is proportional to the concentration gradient dotted with the microscopic velocity

at the surface [12–17]; hence, we can make the following assumption:

ci ·∇ f eqi (x, t)=−C2 c

D
( fi (x, t)− f eqi (x, t)) (19)

The factor on the right-hand side will be justified by comparison with analytical solutions. Substi-
tuting (16) into Equation (19) and using (17), we find for a wall parallel to the y-axis:

�(x, t)= f1
�+�	̂/C2

(20)

where 	̂≡	�t/�x is a dimensionless parameter. By demanding a detailed balance, in the sense that
the non-equilibrium part of the incoming distribution function equals the outgoing with opposite
sign, we find

f3− f eq3 =−( f1− f eq1 ) (21)

‡The steady-state assumption is also used in Equation (17).
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which implies that

f3=(
−1) f1, 
≡ 2

1+ 	̂/C2
(22)

In the case of the 2DQ9 lattice, we have two more distribution functions:

f7 = (
−1) f5

f6 = (
−1) f8
(23)

Note that 
 is independent of the direction; this is a consequence of the fact that we have chosen
all the weights equal, �i =�. Having 
 independent of the direction makes this algorithm very
easy to implement in irregular geometries. Assuming 	̂ to be small,


≡ 2

1+ 	̂/C2
	2− 2

C2
	̂ ⇒ fincoming=

(
1− 2

C2
	̂

)
foutgoing (24)

Comparing (22), (23) and (24), we see that the physical interpretation of the boundary condition is
that only a part of the distribution function is reflected. That is, some of the spins have a probability
of 2 	̂/C2 of dying when hitting the wall; this is exactly the same type of boundary condition used
in RW simulations of NMR [3–8].

3.2. Test of the boundary condition for a square

When performing the simulations with the LB algorithm, we place the boundaries half way between
the lattice points instead of at the lattice points. This greatly improves the convergence to the
analytical solutions, both in the case of the square and the triangle. This fact is illustrated in
Figure 3. The left figure in Figure 3 shows the two solutions for a fixed time t1, where �(t1)/�(0)	
0.50 and the figure clearly demonstrates that they are different close to the boundary. Comparison
with the analytical solution (A15) (see Appendix A) reveals that placing the boundary half way
between grid points gives the best result. In the right figure, we have plotted the magnetic signal
as a function of time, and it is observed that the solution with the boundary half way between the
grid points is very close to the analytical solution (A16).

Now, we will focus on a comparison between 2DQ5 and 2DQ9 lattice. We calculate the L2
norm,

L2=
√∑

i (�N (xi , yi , t1)−�(xi , yi , t1))2√∑
i (�(xi , yi , t1))2

(25)

in the case of intermediate surface effects (�=1) and strong surface effects (�=10). Here
�N (xi , yi , t1) is the magnetic signal at a time t= t1 for a given side length, L=N�x , where N is
the number of links. The time t1 is chosen such that the magnetic signal is approximately 50% of
its original value. �(xi , yi , t1) is the analytical solution; see Equation (A15). The surface effect
can conveniently be summarized by the dimensionless parameter �=	L/D. L is a typical length
scale, taken to be the length of one of the sides in the square or the triangle. If �→∞, the Robin
boundary condition reduces to a Dirichlet boundary condition �(x, y, t)|S =0 and if �→0, the
Robin boundary condition reduces to a Neumann boundary condition n ·∇�(x, y, t)|S =0.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:405–421
DOI: 10.1002/fld



412 A. HIORTH ET AL.

Figure 3. A comparison of two ways of placing the boundary (for the 2DQ5 grid): (1) on the grid points
and (2) half way between grid points. The side length is L=16�x . Left: a plot of �(t1, x, y) against the
x coordinate. t1 is chosen such that �(t1)/�(0)	 0.50. Right: the magnetic signal as a function of time

(�=1) in the two cases and also the corresponding analytical solution.

The L2 norm for the 2DQ9 and 2DQ5 lattice is shown in the upper and lower parts of Figure 4,
respectively. From Figure 4 it is clearly seen that the four velocity model converges faster. A fit to
the lines in Figure 4 gives a slope of 2 (2.03 for �=10 and 1.99 for �=1) for the 2DQ5 lattice.
For the 2DQ9 lattice, the slopes are 1 for �=1 and between 1 and 2 for �=10 (dependent on �).
In Figure 4, we have also plotted the L2 norm for different values of the collision parameter �.
The effect of increasing � is a somewhat less accurate solution for a given lattice size, but the
simulation time is shorter. The simulation time scale is inversely proportional to the diffusion
constant:

tsim∼ L2/D= L2/(C2(�−1/2)) (26)

Then for two different values of �, we have

tsim1/tsim2 =(�1−1/2)/(�2−1/2) (27)

For �1=3 and �2=1, tsim1/tsim2 =5. This argument can also be used for the simulation time
difference by using a 2DQ9 and 2DQ5 lattice. Assuming the collision parameter to be the same
in the case of the 2DQ5 and 2DQ9 lattice, we have t2DQ5

sim /t2DQ9
sim =D2DQ9/D2DQ5= 3

2 , where
we have used that C22DQ9= 3

4 and C22DQ5= 1
2 . The simulation time with the 2DQ5 lattice is

1.5 times longer, which is a consequence of the fact that the particles on the 2DQ9 lattice can
spread out in eight directions compared with the four directions in the 2DQ5 lattice. In practice,
the simulation takes about the same time in both cases, as more operations need to be performed
in the case of the 2DQ9 lattice. To conclude, in the case of the square the 2DQ5 lattice performs
much better than the 2DQ9 lattice. The following subsection reveals that this is an effect of the
representation of the boundary.

3.3. Test of the boundary condition in the case of an equilateral triangle

In this section, we will discuss effects of the lattice in a more non-trivial case than the square. We
have chosen an equilateral triangle [21], see Appendix A, for this purpose. The Robin boundary
condition is a boundary value problem where only the combination of the flux and field is known
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Figure 4. L2 norm calculated after a time where the magnetic signal is 50% of its original value. Upper-
left: L2 norm for 2DQ9 and �=1. Upper-right: L2 norm for 2DQ9 and �=10. Lower-left: L2 norm for

2DQ5 and �=1. Lower-right: L2 norm for 2DQ5 and �=10.

at the surface. It is therefore expected that the discretization of the boundary will greatly impact
the numerical solution. For simplicity, we compare the magnetic signal not at a given time, but
as a function of time i.e. �(t)=∫

�(x, y, t)dx dy. From Figure 5, we clearly see that the 2DQ5
lattice performs much poorer than the 2DQ9 lattice. Even worse the solution does not converge
to the correct solution as the number of lattice points is increased. The explanation for this can be
found by studying the analytical solution in more detail. In the limit of low surface effects (	→0
or �→0), the analytical solution simplifies (see Appendix A):

�(t)=exp

{
	
S

V
t

}
(28)

where S and V are the surface and the volume, respectively. The 2DQ5 lattice does not see a
straight line but a stair type of boundary. When representing a straight line with stairs as in Figure 6
one overestimates the surface. In a Dirichlet problem, this would probably not have such a great
impact as the value of the field at the surface is known, but in our case the rate at which magnetic
signal disappears is proportional to the surface. Consequently, the numerical solution is much more
sensitive for an accurate representation of the boundary. By simply counting the side length in
Figure 6 we find 44�x , the correct side length is 3×12�x =36�x for an equilateral triangle. This
will give a systematic correction for the surface of 44

36 	1.22. By correcting the solution obtained
for 2DQ5 lattice by dividing the surface area S with this factor (see Equation (28)), we find the
solution shown to the right in Figure 6. Now the numerical solution is much closer to the analytical
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Figure 5. The magnetic signal as a function of time, �=1 and low surface effect �=0.01.
Left: 2DQ9 lattice and right: 2DQ5 lattice.

Figure 6. Regular lattice representation of an equilateral triangle with L=12.
Corrected solution for the 2DQ5 lattice.

solution. When the surface effect increases (i.e. � increases), it is not so easy to make any lattice
corrections. When �=1, the correction is of the order of 11% for the 2DQ5 lattice; see the left
figure in Figure 7. The strength of the 2DQ9 lattice is clearly seen to the right in Figure 7, where
a good match is obtained for a side length as low as 12�x .

3.4. Comparison with RW algorithm

In this section we compare the LB algorithm for the 2DQ5 lattice with the RW algorithm [3–8].
In Appendix B, the RW algorithm that we use is derived. The result of the simulations is shown in
Figure 8. We use 106 random walkers in the simulation. From the figure we see that the LB and
the RW algorithms perform well for low surface effects (i.e. low �). The LB algorithm has more
or less the same accuracy for a side length of 5�x , compared with 10�x for the RW algorithm. In
the case of high surface effects (i.e. high �), the number of grid points must be increased in order
to get a good accuracy for the RW algorithm. The LB algorithm performs very well in both cases
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Figure 7. Moderate surface effects �=1. Left: 2DQ5 lattice and right: 2DQ9 lattice.

Figure 8. The magnetic signal as a function of time, comparison random walk algorithm and lattice
Boltzmann (�=1). Left: low surface effects �=1 and right: high surface effects �=10.

with few grid points. The reason for the relative slow convergence of the RW algorithm for high
surface effects, compared with the low surface effects, is probably due to the fact that the walkers
die faster in this case. In order to get good statistics in the RW simulations, one must average over
a high number of walkers. If the walkers die fast (high �), there will be a lower number at later
times and, hence, a poorer statistic.

4. DISCUSSION AND CONCLUSION

We have presented an LB-BGK algorithm for diffusion equation with a Robin boundary condition.
We have specialized to the case of a fluid with zero flow velocity. However, if the velocity of the
fluid can be ignored at the boundary, the equations presented in Sections 2 and 3 can be used
in solving a convective diffusion problem with a Robin boundary condition. We have focused on
application to NMR relaxation; the same algorithm can also be used for absorption of chemical
components in porous media [14–16]. In [14–16] the expression for the reflected distribution
functions was dependent on the collision parameter �. In this work it is not dependent on �; see
Equations (22) and (24). The justification for this has been done on the basis of comparison with
analytical solutions.
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A comparison between a RW-type algorithm and LB has been performed; in the case of a square
domain, the LB algorithm performs considerably better than the RW algorithm. The LB algorithm
does a better job at low number of grid points, and this is more pronounced at low surface effects.

We have found that the lattice effects are very important. If the boundary is not correctly
discretized, it will greatly impact the numerical result. For the 2DQ5 lattice, we have a perfect
match in case of the square, with a quadratic convergence to the analytical solution. In the case of
the triangle, the 2DQ5 lattice has a systematic error of 22%, in the case of low surface effects.

The 2DQ9 lattice performs well in both cases; from Figure 4 it is evident that the 2DQ9 lattice
only has a linear convergence to the solution. This convergence is slow because the boundary is
not optimally discretized by the 2DQ9 lattice. If one wants to have a fast convergence one needs
to have a lattice that approximates the boundary in an accurate manner. For the square, one should
use the 2DQ5 lattice and for the equilateral triangle a hexagonal lattice [21].

The lattice effects are worst for low surface effects (��1) and less important for higher surface
effects. This makes it impossible to make any correction for the lattice effects, other than having a
very good representation of the geometry. The physical reason why the boundary is less important
at higher surface effects is that at low surface effects the spins (or chemical components) diffuse
fast and hit the surface many times before they relax (adsorb). Hitting the surface many times
means that the diffusing particles are very sensitive to the exact geometry of the surface. As surface
effects increase, the particles only hit the surface a couple of times before they disappear.

The important lesson learnt from simulating on a triangular and square domain is that the 2DQ9
lattice is much less sensitive to discretization errors. Even if we do not have a perfect representation
of the geometry, the 2DQ9 lattice gives a satisfying result. If this algorithm is to be used in ideal
geometries, one must be careful to choose a lattice topology that gives a good representation of the
boundary. In more complex geometries, one should use the 2DQ9 lattice as this is less affected by
the discretization errors. From the left figure in Figure 5, we see that there is a very good match
between the analytical and numerical solution for as few as 12 lattice points. This is important as
there is a practical limit in grid size when calculating the numerical solution from a porous media
where the number of pores is very large. The boundary condition presented here is symmetric,
and it has the same form regardless of the orientation of the wall and, therefore, makes it useful
for simulating on complex geometries.

APPENDIX A

A.1. Analytical solutions at zero flow velocity

In order to obtain an analytical solution one uses Green’s function method, we express the magne-
tization, �, as (Figure A1)

�(t)=
∫
V
dr�(r, t) (A1)

�(r, t)=
∫
V
dr′�(r′)G(r′,r, t) (A2)

where �(r′) is the initial spin density and G(r′,r, t) is Green’s function. It is defined as the
probability for a particle at position r′ at time 0 to diffuse to point r during a time t . The propagator
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Figure A1. Coordinate system for analytical solutions.

satisfies the diffusion equation at the interior of the pore space:

�G(r|r′; t)
�t

−D∇2G(r|r′; t)=0

and

G(r|r′; t)|t=0=�(r−r′) (A3)

The boundary condition at the surface S

Dn̂·∇G(r|r′; t)+	G(r|r′; t)|r=S=0 (A4)

We use the standard eigenfunction expansion of the propagator:

G(r|r′; t)=
∞∑
i=0

�i (r)�i (r
′)e−t/Ti (A5)

where {�i } are an orthonormal set of eigenfunctions with corresponding eigenvalues Ti . From
Equations (A3) and (A4) it then follows:

D∇2�i (r)=− 1

Ti
�i (r)

and

Dn̂ ·∇�i (r)+	�(r)|r=� =0 (A6)

For a square, the solution is easily found by using the method of separation of variables:

�(r′)= X (x)Y (y) (A7)
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Green’s function can then be expressed for a square as

G(x, y|x ′, y′; t) = ∑
i, j

412
a2(1+cos1 sin1)(2+cos2 sin2)

×cos
21x

′

a
cos

22y
′

a
cos

21x

a
cos

22y

a
e−t/Ti

1 tan1=�/2, 1∈[(2i−1)�/2,�(2i+1)/2]
2 tan2=�/2, 2∈[(2 j−1)�/2,�(2 j+1)/2]

�≡	a/D and Ti = a2

D
(21+22) (A8)

For an equilateral triangle, the calculation is a bit more involved, but the result can be expressed
[21] as

G(x, y|x ′, y′; t)=
∞∑
i=0

T s
i (x, y)T s

i (x ′, y′)
Ns
i
2

e−t/Ti (A9)

where

T s
i (x, y) = cos

[
2��

3R
y−�2

]
+2cos

[
��√
3R

(
√
3R−x)

]
cos

[ ��

3R
(y−3R)+�2

]

Ns
i
2 = 9

√
3R2

16(��)2
{8(1+�2�2)−7cos[2�2]−8cos[2��]−cos[2�2−4��]

+8cos[2�2−2��]+4��sin[2�2]−16��sin[2�2−2��]}

(A10)

T−1
i = 4D

9

(��

R

)2
(A11)

R=2
√
3a is the radius of the inscribed circle in the equilateral triangle. � and �2 are determined

from the boundary condition (17) and it gives rise to the following transcendental equation:[
1− 3

8

(
�

��

)2
]
tan�� = 9�

4
√
3��

, �∈〈i,1+i]

�2 = tan−1 3�

4
√
3��

and �≡	a/D

(A12)

When Green’s function is known, the magnetic signal can be calculated once the initial magneti-
zation is known. For simplicity, we will chose a uniform initial magnetization:

�(x, y,0)= 1

V
(A13)
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where V is the volume. Then we have

��(x, y, t)=−
∞∑
i=0

9
√
3R2

2(��)2 Ns
i
2
T s
ii (x, y)(cos[�2]−cos[�2−2��]+2��sin[�2])e−t/Tii (A14)

��(x, y, t) = ∑
i, j

412
a2(1+cos1 sin1)(2+cos2 sin2)

×cos
21x

a
cos

22y

a
sin1 sin2e

−t/Ti (A15)

The magnetization as a function of time can then be found by performing the last integration:

��(t)=
∞∑
i=0

4sin2 1 sin
2 2

12(1+cos1 sin1)(2+cos2 sin2)
e−t/Ti (A16)

��(t)=
∞∑
i=0

27
√
3R2

4(��)4N 2
i

(cos[�2]−cos[�2−2��]+2��sin[�2])2e−t/Ti (A17)

Two aspects should be noted regarding the analytical solutions. First, if the surface relaxtivity
approaches zero, 	→0, only one mode contributes to the magnetic signal and

�(t)=�(0)exp{−t/T }, 1

T
=	

S

V
(A18)

where S is the surface area and V the volume of the triangle or the square. This is a special case
of the general result obtained by Brownstein and Tarr [1, 2], where they showed that this holds for
all kind of geometries. Second, if one introduces a dimensionless time, then

t→ t

�D
, �D =

(
V

S

)2 1

D
(A19)

�D =a2/(16D), a2/(48D) for a square and an equilateral triangle, respectively. Then the magnetic
signal is only dependent on the value of �=	a/D; see (A16) and (A17). Therefore, if one plots
the magnetic signal as a function of a rescaled time only then the value of � needs to be given.

A.2. The RW algorithm

In order for the paper to be self-contained, we present the RW algorithm on a regular grid with
four directions [3–8]. By applying a set of rules for random walkers placed on the grid, we can
derive the diffusion equation in the continuum limit.

Random walkers are placed at random at a lattice point in the simulation domain. The number
of random walkers at an interior point (x, y) (see Figure A2) when the clock advance one step �
is equal to the incoming flux from neighboring points:

�(x, y, t+�)−�(x, y, t) = 1
4 [�(x+�, y, t)−�(x, y, t)+�(x−�, y, t)−�(x, y, t)

+�(x, y+�, t)−�(x, y, t)+�(x, y−�, t)−�(x, y, t)] (A20)
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Figure A2. Left: regular grid used for random walk simulations, inside the simulation domain.
Right: points close to the boundary.

The factor 1
4 in front is the probability that a walker takes a step in one of the four directions.

Dividing this equation by �, we find after some rearrangement the following:

�(x, y, t+�)−�(x, y, t)

�
= 1

4

�2

�

[
�(x+�, y, t)−2�(x, y, t)+�(x−�, y, t)

�2
(A21)

+�(x, y+�, t)−2�(x, y, t)+�(x, y−�, t)

�2

]
(A22)

The lattice spacing is given by �. Taking the limit �→0, �→0:

��(x, y, t)

�t
−D∇2�(x, y, t)=0 (A23)

where

D≡ �2

4�
(A24)

The boundary condition can be derived in a similar way. We introduce a probability of ‘dying,’

∈[0,1], when a walker hits the wall. For a wall parallel to the x-axis (see Figure A2), the number
of random walkers at a boundary point is equal to the flux from neighboring points:

�
�(x, y, t+�)−�(x, y, t)

�
= �

�2

4�

[
�(x+�, y, t)−2�(x, y, t)+�(x−�, y, t)

�2

]
(A25)

+ �2

4�

�(x, y−�, t)−�(x, y, t)

�
− 
�

4�
�(x, y, t) (A26)

We have multiplied by �/� and sorted out the diffusion constant �2/4�, which approaches a constant
when �,�,→0. Thus, in the limit �,�,→0, we find

Dny ·∇�(x, y, t)+	�(x, y, t)=0 (A27)

where

	≡ 
�

4�
(A28)

where ny is the unit vector in the y-direction.
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